Standard Structure for Packaging, Integrating and Re-using IP within Tool-flows IEEE P1685/D4, February 5, 2014

12. Addressing

This clause describes how addresses are transformed between a slave’s memory map and a master’s address
space. Clause 13 also describes how to determine which bits of the memory map are visible in the master’s
address space.

Indirect interfaces and the associated indirectly accessible memory map do not directly add to the address
map. Rather, each indirect interface requires a separate address map calculation. Address map calculation
for indirect interfaces is the same as a slave bus interface. The indirect address field and indirect data field
are analogous to the logical address and data ports of a slave bus interface.

NOTE—In both Clause 12 and Clause 13, equation variables are denoted with letters offset in parenthesis, e.g., (b),

(d), etc; whereas, the equations themselves are numbered (and offset in parenthesis), e.g., (1), (31), etc. Any subse-
quent references are shown as superscripted (and enclosed in parenthesis), e.g., address offset (®) or
item width 4, B

12.1 Calculating the bit address of a bit in a memory map

A memory map consists of a set of address blocks, subspace maps, and banks containing further address
blocks, subspace maps, and banks (to any number of levels). To calculate the address of a bit within an
address block or subspace map relative to the containing memory map, its bit address needs to be calculated
relative to its parent. If that parent is a bank, how that bank modifies the address needs to be calculated first,
and then continue working up the bank structure until the memory map is reached. To do so, the following
formulas apply.

— For a bit in an address block directly in a memory map:

address_offset = offset in address unit bits (a)

The address_offset describes the offset in address-unit-bits. In IP-XACT, the following items’ offset
are described in address-unit-bits: addressBlock base-address, register and register-file addressOft-
set, bank baseAddress, and subspaceMap baseAddress.

bit offset = offset in bits (b)
The bit_offset describes the offset in bits. In IP-XACT, the bitOffset for fields is described in bits.

addressBlock_bit _address = ((address_ojﬁet(“) + addressBlock.baseAddress) x
memoryMap.addressUnitBits) + bit_qﬁ’set(b) (1)

— For a bit in a subspace map:

subspaceMap_bit_address = ((address_offset(“) + subspaceMap.baseAddress) x
addressSpace.addressUnitBits) + bit_offset(b) 2)

However, the following formulas need to be used on any containing banks.

a) For an item (bank, subspace map, or address block) within a serial bank:

container_addressUnitBits := memoryMap.addressUnitBits | addressSpace.addressUnitBits (3)
item_width := addressBlock_width(I 4 | subspaceMap_width(I 3) | bank_width((16) (4)
item_range := addressBlock_range(g) | subspaceMap_mnge(g) \ bank_range(l D (5)
item_rows = ceiling((item_mngem X container_addressUnitBits(g))/ item_width(4)) (6)

Copyright © 2014 IEEE. All rights reserved. 177

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1685/D4, February 5, 2014 DRAFT STANDARD FOR THE

The effective range of an item is its range rounded up to the nearest complete row:

item_effective_range = item_rows(6) X item_width(4) (7)

The range of an item is calculated depending on its type:

1) For an address block the range is the value of the range subelement;

addressBlock range = addressBlock.range (8)
2) For a subspace map which references a segment, the range is the value of the segment's range
elements; for other subspace maps, the range is the value of the address space's range subele-

ment, then the range is normalized by multiplying it with the address space's address unit bits
and then divided by the subspace map's memory map address unit bits;

subspaceMap _range = (addressSpace_range(I 0 % addressSpace.addressUnitBits) /
memoryMap.addressUnitBits 9)

addressSpace_range := addressSpace.range | addressSpace.segment.range (10)

3) For a bank the range is dependent on its alignment;

bank _range := serial_bank_range(l 2 | parallel_bank_range(l 4 (11)
4) For a serial bank, the range is the sum of the effective ranges of the subitems;

n—1
serial_bank_range = Z item_effective_range;) (12)

i=0

5) For a parallel bank, the range is the (largest item rows of all the subitems)
x (bank width/addressUnitBits);

parallel _bank _range = max(item_rows(é) [0], ..., item_rows(6) [n-1]) x parallel_bank_width((18
/ container_address UnitBits” (13)

(i.e., the effective range of an item is its range rounded up to the nearest complete row)
The width of an item is calculated depending on its type:
6) For an address block, the width is defined as the value of the width subelement;

addressBlock_width = addressBlock.width (14)

7) For a subspace map, the width is the width of the address space of the referenced bus interface;
subspaceMap_width = addressSpace.width (15)
8) For a serial bank, the width is the width of the widest subitem;
bank_width := serial_bank width”) | parallel_bank_width'® (16)

serial_bank width = max(item_width(4)[0], item_widthm [n-1]) (17)

9) For a parallel bank, the width is the sum of the widths of the subitems.

178 Copyright © 2014 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Standard Structure for Packaging, Integrating and Re-using IP within Tool-flows IEEE P1685/D4, February 5, 2014

n—1
parallel bank width = z item_width;) @

i=0
b) For an offset within item 7 in a serial bank:

serial_bank_bit _address = bit_offset(b) +

n-1
(Z item_effective_range; 7 x container_addressUnitBits(j))

i=0
¢) For a bit within item # in a parallel bank containing m items:

n—1
bit offset in_row = bit_oﬁ%et(b) mod item_width(4) [n] + z item_width;) &
i=0
n—1
row_bit_offset = Z item_width;) @ x (bil_oﬁ’set(b) /item_width(4) [n])

i=0

parallel_bank_bit_address = row_bit_oﬁ’set(2 D+ bit_ofj"set_in_row(z 0

(18)

(19)

(20)

(21)

(22)

Once the bit address within a top-level bank has been calculated, the bit address within the memory

map can be derived from the following formula:

bank_bit_address := parallel_bank_bit_address(zz) | serial_bank_bit_address(1 9

(23)

memory_map_bit_address = address_space bit _address = block_bit_address(25) + (item.baseAddress x

container_addressUnitBits 3)

(24)

block_bit address: :subspaceMap_bit_address(2) \ addressBlock_bit_address(1) | bank_bit_ada’ress(z 3) (25)

12.2 Calculating the bus address at the slave bus interface

The bus address of a bit at the slave bus interface can be derived from the following formulas:

slave_bus_address = memory_map_bit_address(M) / slave.bitsInLau

On a bus, the bit offset gives the offset within the LAU of the bit using the following formula:

slave_bit offset = memory_map_bit_address(M) mod slave.bitsInLau

12.3 Calculating the address at the indirect interface

The address of a bit at an indirect interface can be derived from the following formula:

indirect_interface_bus_address = memory_map_bit_address(z 49 indirect_interface.bitsInLau

The bit offset gives the offset within the LAU of the bit using the following formula:

Copyright © 2014 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

(26)

27)

28)

179

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1685/D4, February 5, 2014 DRAFT STANDARD FOR THE

indirect_interface_bit offset = memory_map_bit_aa’dress(2 Y mod indirect_interface.bitsInLau (29)

12.4 Address modifications of a channel
The address at the mirrored slave interface can be derived from the following formula:

mirrored_slave _bus_address = (slave_bus_address(%) x slave.bitsInLau) / mirroredSlave.bitsInLau (30)

This is then modified by the remap address:

mirrored_slave_row_address = mirrored_slave_bus_address®? +
(mirroredSlave.baseAddress.remapAddress) (31)

where remapAddress is the remap address for the current state of the channel.

mirrored_master_bus_address = (mirrored_slave_row_address(3 Dy mirroredSlave.bitsInLau) /
mirroredMaster.bitsInLau (32)

12.5 Addressing in the master

The bus address at the master bus interface can be derived from the following formula:

master_bus_address = (mirrored_master_bus_address(32) x mirroredMaster.bitsInLau) /
master.bitsInLau (33)

This gives a bit address of

master_bit_address = master_bus_address(3 3 % master.bitsInLau (34)
The bit address may then be converted to an addressing unit address and offset using the formulas:
addressSpace _bus_address = master_bit_ada’ress(3 vy addressSpace.addressUnitBits (35)

addressSpace_bit offset = master_bit_address(3 Y mod addressSpace.addressUnitBits (36)

12.6 Address translation in a bridge

The address at the master interface for a bridge can be derived from the following formulas:

a) The bus address at the master bus interface is:

bridge master bus address = slave_bus_aa’a’ress(2 % (37)

This gives a bit address of

bridge _master _bit_address = bridge_master_bus_address(3 7 % bridge _master.bitsInLau +
bridge _master.addressSpaceRef.baseAddress x addressSpace.addressUnitBits (38)

The master bit address (also equal to the address space bit address) may be converted to an address-
ing unit address and offset of the addressSpace using the formulas:

bridge address space address = bridge_master_bit_address(3 8, addressSpace.addressUnitBits (39)

180 Copyright © 2014 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Standard Structure for Packaging, Integrating and Re-using IP within Tool-flows IEEE P1685/D4, February 5, 2014

bridge _address _space offset = bridge_master_bit_address(3 8 mod addressSpace.addressUnitBits (40)

b) The bit address may also be converted to the address of the bridged slave interface by using the fol-
lowing formulas:

1) For a transparent bridge:

bridge slave_address = bridge_address_space_addressﬁ 9 x addressSpace.addressUnitBits /
bridge slave.bitsInLau (41)

2) For an opaque bridge:

bridge slave_address = (((bridge_address_space_address(3 9_ segment.addressOffset) x
addressSpace.addressUnitBits) / bridge_slave.bitsInLau) + slave_bus_address(2 %) (42)

¢) When an indirect interface is bridging to a master, the bit address may also be converted to the
address of the indirect interface using the following formulas:

1) For a transparent bridge:

bridge_indirect interface address = (bridge_address_space_address(3 9 x
addressSpace.addressUnitBits) / bridge_indirect_interface.bitsInLau (43)

2) For an opaque bridge:

bridge_indirect_interface_address = (((bridge_address_space_address(3 9 segment.addressOffset) x
addressSpace.addressUnitBits) / bridge_indirect_interface.bitsInLau) + slave_bus_addressa 6) (44)

13. Data visibility

The addressing descriptions in Clause 12 presume each bus interface only maps a single logical address port
(a port with an isAddress qualifier) and a single logical data port (a port with an isData data qualifier). See
also: 5.6 and 5.9.

If a bus interface maps more than one address or data port, then each combination of address and data ports
implies a separate addressing and data visibility calculation. To calculate the address map for a particular
type of transaction, the data and address ports that transaction uses need to be known first.

The most common case for multiple data ports in a single bus interface is where there are separate read and

write data ports; however, their relevant properties of the read and write data ports are typically identical—
giving identical read and write address maps.

13.1 Mapped address bits mask

The mapped address bits need to be taken into account when calculating the data visibility to the interface by
deriving a mask from the set of address bits mapped in the interface. This mask is 'bitwise anded' with
the bus address.

interface_mapped_address_bits = a mask derived from the set of address bits mapped in the interface (c)

interface_bus address := slave_bus_address(z %) | mirrored_slave_bus_address(3 0 |
mirrored_master_bus_address(32) | master_bus_addressﬁ 3) | bridge_master_bus_address(3 7) (45)

Copyright © 2014 IEEE. All rights reserved. 181
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1685/D4, February 5, 2014 DRAFT STANDARD FOR THE

interface_visible_bus_address = inte;face_bus_address(45) & interface_mapped_address_bits@ (46)

13.2 Address modifications of an interconnection

The bus address is carried between adjacent bus interfaces (slave and mirrored slave, master and mirrored
master, or master and slave) on the bus’s isAddress logical port. If this port is a wire port, the address is
always carried as parallel bits with the least significant bit of the address on logical bit O of the port. The
interconnection can modify the address in two ways:

a) If some address bits are not connected, addresses with those bits set are not accessible from the mas-
ter.

1) Examine the logical vectors in the port maps to determine which address bits are connected.
2) Transactional ports always carry all address bits across the interconnection.
b) If the value of bitsInLau differs on the two sides of the interconnection, the interpretation of the

address as a bit address can vary by the ratio of the interfaces’ bitsInLau. This, however, does not
alter the actual bus address.

13.3 Bit steering in a channel

How addresses are modified within a channel depends on the value of bitSteering in the mirrored slave
interface. It also depends on the relative width of the mirrored master and mirrored slave data ports, where
this width is defined to be the total number of bits of the logical data port that are mapped in the bus
interface. If bitSteering is on, or the slave is wider than or the same width as the master, the addresses
are simply modified to take into account any change in bitsInLau between the mirrored slave and the
mirrored master, as shown in the following formula:

mirrored_master_steering on_visible _bus_address = mirrored_master_bus_address(3 2 &
mirrored_master_mapped_address_Dbits (© (47)

If bitSteering is off and the mirrored slave is narrower than the mirrored master, the address is
adapted so all locations in the slave’s memory map are visible:

mirroredMaster_width = relative width of the dataport of the mirrored master interface (d)
mirroredSlave_width = relative width of the dataport of the mirrored slave interface (e)
mirrored_slave bit_address = mirrored_slave_row_addressG D % mirroredSlave.bitsInLau (48)

mirrored_master_bit_address = mirrored_slave_bit_address“8) mod mirroredSlave_width(e) +
(1 (mirrored_slave_bit_address(48) / mirroredSlave_width(e)) x mirroredMaster_width(d)) (49)

mirrored_master_steering off visible_bus_address = mirrored_master_bit_addressM9) /
mirroredMaster.bitsInLau & mirrored_master_mapped_address_bits(c) (50)

Finally, bitSteering has a different meaning in a mirrored slave interface than in a master or slave interface.
In a master or slave interface, it means the component shall modify which bit lanes are used for data when
accessing narrow devices. In a mirrored slave interface, it means the addresses from a mirrored master
interface are not modified for transfers to a narrower mirrored slave data port.

13.4 Visibility of bits

A bit in the slave’s memory map is visible in the master’s address space if:

182 Copyright © 2014 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Standard Structure for Packaging, Integrating and Re-using IP within Tool-flows IEEE P1685/D4, February 5, 2014

— it is in an address range visible to the master;

— the master and slave agree on which bit lane the bit should appear and this bit lane is connected
between the master and the slave.

13.4.1 Visible address ranges

Two conditions need to be fulfilled for an address in the slave to be visible to the master.

a) The address at the mirrored slave shall be within the range supported by the mirrored slave interface:

mirrored_slave visible bus_address < mirroredSlave.baseAddress.range 51)

b) The address in the address space shall be within the range supported by the master address space for
that bus interface:

0<= master_bit_address(3 Y < addressSpace.range x addressSpace.addressUnitBits (52)
13.4.2 Bit lanes in memory maps
The local bit lane of a bit in an address block is:

address_block_bit lane = addressBlock.bit_oﬁ%et(b) mod addressBlock.width (53)

Similarly, in a subspace map the bit lane is:

subspace_map_bit lane = subspaceMap.bit_ofﬁet(b) mod addressSpace.width (54)

where the addressSpace.width is the width of the address space of the referenced master bus inter-
face.

If the address block or subspace map is at the top-level of the memory map or only within serial banks, the
bit lane in the memory map is the local bit lane.

local _bit lane := address_block_bit_lane(5 3) | subspace_map_bit_lane(5 4 (55)
If it is item # in a parallel bank, then:

n—1
bank_bit_lane = " item_widthy; @ + local bit lane® (56)

i=0

If it is in multiple hierarchical parallel banks, this formula is applied at each higher level with the lower-level
bank_bit_lane replacing local bit lane.

The bit lane in the memory map is the top-level bank bit lane.
13.4.3 Bit lanes in address spaces

The bit lane in an address space can be derived from the following formula:

address_space _bit_address = master_bit_addressﬁ 4 (57)

Copyright © 2014 IEEE. All rights reserved. 183
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

10

15

20

25

30

35

40

45

50

55

IEEE P1685/D4, February 5, 2014 DRAFT STANDARD FOR THE

address_space_bit lane = address_space_bit_address(5 ”) mod addressSpace.width (58)

13.4.4 Bit lanes in bus interfaces

In a bus interface, the logical bit numbers of the data port carry the corresponding bit lanes. For example, if
a slave bus interface has a data port with a logical vector of [15: 8], this port can access bit lanes 15 to 8
of the memory map and logical bit lanes 15 to 8 in the connected mirrored slave or master interface.

13.4.5 Bit lanes in channels

All bus interfaces on a channel shall use the same logical numbering of data port bits. This means data bits
cannot be moved between bit lanes in a channel by giving the mirrored bus interfaces different logical to
physical mappings on their data ports.

13.4.6 Bit steering in masters and slaves

Bit steering only takes effect when the master and the slave have data ports of different widths. If they do
and bit steering is enabled (i.e., bitSteering is on in the master or slave interface) for the bus interface
with the wider data port, then this data port shall move its copy of output data to the correct bit lanes for the
narrower port and read its input data from the correct bit lanes for the narrower port.

If bit steering is disabled in the wider port, the master can only access data at a particular address when the
bit lane for that address in the address space is connected (through the bus interfaces and a channel) to the bit
lane for the corresponding address in the memory map.

The following also apply.
— The bitSteering value has a different meaning in mirrored slaves. See 12.2.

— Some buses with bit steering may only support certain data port widths. Describing which widths are
supported is outside the scope of IP-XACT.

— Bit steering allows software or hardware away from the bus interface to work without knowing the
width of devices on the far side of the bus. To provide this functionality, a bus supporting bit steer-
ing normally gives the same address bits to all devices, irrespective of their widths, and does not
adapt addresses to the width of the slave bus interfaces (i.e., bitSteering is on in the mirrored
slave bus interfaces). Thus, a non-bitsteering master on such a bus only has access to some of the
memory rows of narrower slaves.

184 Copyright © 2014 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

	12. Addressing
	12.1 Calculating the bit address of a bit in a memory map
	12.2 Calculating the bus address at the slave bus interface
	12.3 Calculating the address at the indirect interface
	12.4 Address modifications of a channel
	12.5 Addressing in the master
	12.6 Address translation in a bridge

	13. Data visibility
	13.1 Mapped address bits mask
	13.2 Address modifications of an interconnection
	13.3 Bit steering in a channel
	13.4 Visibility of bits

